
pelea: Planning, Learning and Execution Architecture

Vidal Alcázar
Universidad Carlos III de Madrid

valcazar@inf.uc3m.es

César Guzmán
Universidad Politécnica de Valencia

cguzman@dsic.upv.es

David Prior
Universidad de Granada

dprior@decsai.ugr.es

Daniel Borrajo
Universidad Carlos III de Madrid

dborrajo@ia.uc3m.es

Luis Castillo
Universidad de Granada, Granada

L.Castillo@decsai.ugr.es

Eva Onaind́ıa
Universidad Politécnica de Valencia

onaindia@dsic.upv.es

Abstract

One of the current limitations for large-scale use of
planning technology in real world applications is the
lack of software platforms to integrate the full spectrum
of planning-related technologies that include sensing,
planning, executing, monitoring, replanning and even
learning from past experiences. In this paper we de-
scribe the design of such an architecture, pelea (Plan-
ning, Execution and LEarning Architecture) that has
been conceived as a general-purpose architecture suit-
able for a wide range of problems from robotics to emer-
gency management. We present the requirements of
this architecture, its main components, as well as the
connections among them. Currently, we have a first
prototype of such platform.

Introduction
Planning technology is being used for many different
kinds of applications, ranging from space (Ai-Chang et
al. 2004), fire extinction (Fdez-Olivares et al. 2006),
logistics (Florez et al. 2010), or education (Castillo et
al. 2009) among many others. The process of devel-
oping the final application is an “ad-hoc” manual pro-
cess that requires expertise and techniques from several
fields (planning, controllers, learning, or user interfaces
among others), as well as the careful definition of the
underlying architecture. Most applied work defines ar-
chitectures that conceptually incorporate a set of com-
mon abilities and are structured in a similar way. More
specifically, applications are based on sensing the state
(which is commonly used in robotics applications, but is
also common at different levels of abstraction for all ap-
plications), generating the problem at hand, planning
(using many different kinds of techniques), executing
the plan (by either setting up tasks to a machine, or
suggesting actions to a human), monitoring the execu-
tion for failures (unexpected results, unability to exe-
cute the next action or plan, . . .). These applications
are also based on replanning when needed, and, pos-
sibly, learning from the interaction to generate better
models or control knowledge to improve search.

Currently, there are some initial attempts to generate
generic architectures that have been used for different
purposes, as it is the case of space and robotics appli-

cations of platforms as Mapgen (Ai-Chang et al. 2004),
APSI (Cesta et al. 2009), PRS (Georgeff and Lansky
1987), or IxTeT (Ghallab and Laruelle 1994). How-
ever, these platforms have been designed for particular
techniques, as timeline-based planning (Ai-Chang et al.
2004; Cesta et al. 2009; Ghallab and Laruelle 1994),
hierarchical planning (Fdez-Olivares et al. 2006), or
reactive controllers (Georgeff and Lansky 1987).

The goal of the pelea project is to build a
component-based architecture able to perform plan-
ning, execution, monitoring and learning in an inte-
grated way, in the context of PDDL-based and HTN-
based planning and suitable for a wide range of planning
problems. We define first the architecture, its compo-
nent modules, as well as the connections among those
modules. The architecture would allow the planning
engineers to easily generate new applications that inte-
grate all such capabilities by reusing and modifying the
components. A second scientific advantage of such ar-
chitecture would be to allow researchers or practitioners
to compare techniques. We intend to provide a set of
tools that implement different techniques for each mod-
ule, so that users can choose among those. The paper
describes the on-going work on this architecture.

Overview of pelea Architecture
The architecture for pelea includes components that
allow the applications to dynamically integrate plan-
ning, execution, monitoring, replanning and learning
techniques. In general, there are two main types of rea-
soning: high-level (mostly deliberative) and low-level
(mostly reactive). This is common to most robotics ap-
plications and reflects the separation between a reactive
component and a deliberative component. However, in
our architecture, these are simply two planning levels.
This offers two main advantages: both levels can be
easily adapted to the requirements of the agent; and
the differentiation allows the agent replanning at either
level, which grants a greater degree of flexibility when
recovering from failed executions. Thanks to this, pe-
lea can be used to implement applications in the whole
spectrum:
• In full deliberative applications (as for instance in the

case of applications with no need to respond in short

real time), there is no need for a reactive component,
so the related components can be set to null. Exam-
ples are logistics applications that plan a sequence of
trucks movements (Florez et al. 2010).

• In some deliberative applications, there is no need
for a reactive component, but it is useful to separate
high-level reasoning of some low-level implementation
of that reasoning. For instance, in some robotics ap-
plications, there might not be a need for the robot to
react fast, but it might be useful to separate the spec-
ification of high-level actions (navigate, take-image)
from their current implementation or multiple imple-
mentations (using low-level actions to set the speed of
wheels). In this case, it is useful to have these two rea-
soning levels separated in the two components of the
architecture (high-level and low-level) that are usu-
ally implemented using different techniques (PDDL-
based planning vs. controllers based on all kinds of
technologies).

• In full reactive applications, the deliberative compo-
nent might not be needed or can be used very rarely
to set up general plans to carry out. In that case,
most of the control loop will be in charge of the low-
level components.

It would be possible to add additional levels to al-
low developers for a more hierarchical decision process.
However, we consider that the sole distinction between
high and low level is enough to tackle most problems,
as has been shown in many robotics applications. Fig-
ure 1 shows the current version of the architecture that
permits the integration of the modules. Even if we did
not provide the explicit APIs, all modules in the archi-
tecture have access to either the high-level and low-level
domain. We will describe in more detail later on which
domain is input and output of each component.

As we can see, it is composed of eight modules
that exchange a set of Knowledge Items (KI) dur-
ing the reasoning and execution steps. We have cho-
sen to use XML within the architecture to represent
those KI because of its wide spread use as a com-
mon language to exchange information and our previ-
ous experience using it in different real world applica-
tions (Fdez-Olivares et al. 2006; Florez et al. 2010;
Castillo et al. 2009).

The main KIs that we have used are (the modules
also exchange the information related to the parameters
that configure how each module works1):

• stateL: low-level state composed of the sensory infor-
mation

• stateH: high-level state, that gets translated from sta-
teL as an aggregation or a generalization of low level
information

• goals: the set of high-level goals to be achieved by
the architecture

1For instance, which planner to execute.

• metrics: the metrics that will be used in the high-
level planning process

• planH: set of high level plans. Each high level plan is
a set of ordered actions resulting from the high-level
planning process. Usually, they will be sequentially
ordered, though parallel plans can also be given. The
actions of these plans can also be the goals for the
low-level planner (in case we want the low-level plan-
ner to act as a dynamic translation mechanism for
high-level actions)

• planL: set of low level plans. Each low level plan is
again an ordered set of actions resulting from the low-
level planning process. Usually, it will consist of only
one plan, and several actions that can be executed
in parallel. These actions should be operational: di-
rectly executable in the environment

• domainH: definition of actions for high-level planning

• domainL: definition of behaviors (skills) for low-level
planning

• learning examples: to be used by the learning com-
ponent to acquire knowledge for future planning
episodes, either in the form of heuristics, domain
models, or knowledge on the problem specification

• heuristics: in different forms (control rules, policies,
cases, macro-actions, etc.) allow the planners to
improve their efficiency in solving future planning
episodes

• monitoringInfo: meta knowledge on the plan that
helps to perform the monitoring (as, for instance, the
footprint of each action)

Control Flow and Communication
pelea follows a continuous planning approach, i.e. an
ongoing and dynamic process in which planning and ex-
ecution are interleaved (Myers 1999; Chien et al. 2000).
The general algorithm of pelea is depicted in Algo-
rithm 1, and we detail the flow of the architecture next.

The pelea architecture is controlled by a module,
called Top-level control, which coordinates the execu-
tion and interaction of the Execution and Monitoring
modules. pelea architecture uses a two-level knowl-
edge approach. The high-level knowledge describes gen-
eral information, actions in terms of its preconditions
and effects, and typically represents an abstraction of
the real problem. High-level knowledge is concerned
with the description of the high-level domain, prob-
lems, goals and metrics, and they are required for the
purpose of planning sequences of actions, and for the
modifications of these sequences (repair or replanning).
For example, in the blocksworld domain, the operation
(stack A B) is a high-level knowledge item, and specifi-
cally defines a high-level action.

However, since high-level knowledge descriptions are
rarely directly executable, if ever, they must be com-
plemented by the low-level knowledge, which specifies
how the operations are actually performed in terms of

Execution

Monitoring

LowToHigh

Goal &
metric

generation

Decision
support

Low-level
plannerHigh-level

replanner

Learning
DomainH

.flat
 .HTN...

domainL

sensors actuators

problem
stateL
domainH
domainL

planL
finishp

problem

domainH

problem
domainH

learning
examples

problem
domainH planH

info monitor

planL

planH, domainL

planH

stateL planL

stateL,
stateH

stateH

problem

domainH
domainL

problem,domainH,domainL

knowledge

knowledge

Figure 1: Architecture of pelea.

continuous change, sensors and actuators. Low-level
knowledge describes the more basic actions in the sim-
ulated world, and it is typically concerned with specific
rather than general functions, and how they operate.
The low-level knowledge is read from the environment
through the sensors placed in the Execution module.
The environment is either a hardware device, a soft-
ware application, a software simulator, or a user. An
example of low-level knowledge would be “the coordi-
nates of a robot” or “degrees of motion of a robot arm”.
In pelea, it is not necessary to work at the two knowl-
edge levels. For instance, one can just work at the high-
level, so that converting knowledge from high-level into
low-level with the LowToHigh module or using the Low-
level planner module are not needed.

The starting point of the architecture is the Execu-
tion module, which is initialized by the Top-level control
(see function Start in Algorithm 1), receiving a high-
level and low-level domain, and a problem, composed of
an initial state, a set of goals to achieve, a set of objects,
and, optionally, a metric. The Execution is initialized
with the domain and the problem, which in turn initial-
izes the objects and their positions in the environment.
The Execution keeps only the static part of the initial
state, given that the dynamic part, called stateL (low-
level state), will come from the environment through
the sensors (this is done through the function getSen-

sors in Algorithm 1). stateL, the problem and the do-
main are sent by the Top-level control to the Monitor-
ing module to obtain a low-level plan (planL) (function
getPlanL in Algorithm 1). The actions in planL are ex-
ecuted one by one by the Execution module (function
ExecuteAction in Algorithm 1). As commented above,
the modules LowToHigh and Low-level planner are only
used in case the domain is modeled at the high and low
levels. Otherwise, the Monitoring calls directly the De-
cision Support to obtain a high-level plan (planH). On
the other hand, the module Goals&Metric Generation is
invoked in case the problem goals or the metric change
dynamically along the plan execution.

Once the Monitoring module receives the necessary
knowledge (state, problem and domain), it starts the
monitoring process. The first step of the plan monitor-
ing is to check whether the problem goals have already
been achieved (goalsL and goalsH in case we are deal-
ing with the two processes). If so, the plan execution
finishes; otherwise, the Monitor begins with the first
iteration of the plan monitoring.

At the first iteration of the algorithm, there is no plan
to monitor yet, so the Monitoring calls the Decision
Support, which obtains a valid plan that achieves the
goals from the current observed state through the High-
level replanner. This latter module receives a problem
and a high-level domain (domainH), and generates a

Data: problem=(stateH, goalsH, metrics, objects), domainH, &optional domainL
Result: finish execution
begin

;; Initializes the Execution, which in turn initializes the simulator

Execution.Start(problem, domain)
planL←− null
repeat

;; Receive sensors from environment (Execution)

stateL←− Execution.getSensors()
;; If a new plan is returned, it means that the objectives have not been achieved and the new plan must be executed. Otherwise

it may be assumed that the¡ZA objectives have been achieved.

planL←−Monitoring.getP lanL(stateL, problem, domainH, domainL, planL)
;; Execute the actions one by one or the comprehensive plan

if exists actionL in planL to be executed then
Execution.ExecuteAction(actionL)

end
until n̄ot (exists actionL in planL to be executed)
;; When we get here that means that goalsL are satisfied

finishexecution

Algorithm 1: Top-level control algorithm of pelea.
end

high-level plan (planH). planH is sent back to the De-
cision Support module, which computes the variables
to be monitored and keeps this information in the pa-
rameter info monitor (Figure 1). Both planH and info
monitor are sent by the Decision Support to the Mon-
itoring.

The Monitoring module, with the help of the Low-
level planner module, generates a set of executable low-
level actions (planL), if this is the case. If the Low-
level planner module is not being used, the Monitoring
assumes that the high-level actions in planH are exe-
cutable, and they are sent to the Execution module,
which executes the actions one by one. Then, it senses
the dynamic part of the state from the environment.
The Monitoring receives the information from the ob-
served state (stateL) after the execution of an action,
and verifies the information in stateL against the pa-
rameter info monitor. If the values of all the checked
variables are within the value range specified in info
monitor, the Monitoring continues with the plan ex-
ecution. Otherwise, if a discrepancy between the ex-
pected and the observed state (stateL) is encountered,
the anomaly is reported to the Decision Support, which
determines whether the discrepancy is relevant to the
plan execution or not. That is, whether the plan is still
valid to achieve the goals from the current observed
state. At this point, the low-level planner can also be
invoked to find the most immediate actions for a rapid
intervention -if reactivity is needed- since this module
typically stores predefined behaviours or courses of ac-
tions for reaching a situation. In case the Decision Sup-
port finds the anomaly entails a plan failure, and so
the plan is no longer executable, it will take a decision
about whether applying a plan repair, or replanning

through the High-level replanner, thus starting a new
iteration of the algorithm. Particularly, the Decision
Support decides whether it is worth repairing the plan,
in which case it fixes planH and makes it executable
again, or, it would be better to replan, in which case it
requests a new plan to the High-level replanner module.
In case that the discrepancy is not relevant to the plan
validity, the Decision Support resumes the execution of
planH by sending back the remaining and the new pa-
rameter info monitor to the Monitoring module, which
in turn sends the next action to the Execution.

Whilst no discrepancies are found in the observed
state, the two modules that are continuously interact-
ing are the Monitoring and the Execution. The Moni-
toring not only checks for discrepancies but also if the
problem goals (goalsL and goalsH) are already satisfied
in the current state. In that case, the overall process is
finished.

XML Schema definition

The PELEA architecture uses a PDDL-like syntax lan-
guage. However, having components that dynamically
integrate planning, execution, monitoring, replanning
and learning techniques, we opted for a better option
in the form of the Extensible Markup Language (XML).
Using XML as the communication standard format has
several advantages; eg. XML is considered as a stan-
dard reference language, it enjoys vast third-party li-
brary support, it allows for a PDDL standard repre-
sentation, and it is easily extensible and flexible. Our
XML Schema definition is called XPDDL, and it is rep-
resented by three XML document schemas: domain,
problem and plan schemas. The domain schema han-
dles the formal definition of a domain, which is defined

by our XML schema XPDDL. The domain sections are:
requirements, types, predicates, and action-def. An ex-
ample can be seen in Figure 2.

The transformation of the PDDL domain format to
XML (XPDDL) is performed by a module component
(PDDL2XML) of the DS module, which uses the do-
main scheme for the translation into this format. The
transformation of XPDDL to PDDL is performed by
a module component (XML2PDDL) of the High-Level
Replanner (HLR).

The problem schema specifies a problem instance
of that domain, which describes the objects, init
and goal sections. Again, the translation from/to
XPDDL to PDDL is performed by the PDDL2XML
and XML2PDDL components.

The plan schema encodes the solution to a problem.
It also contains meta-data such as the domain and prob-
lem names, the number of actions, the initial time, the
planning time, and the description of each of the ac-
tions. In this case, the transformation of the ASCII
plan format to XPDDL is performed by PLAN2XML.

Components of pelea

In this section we describe in more detail the compo-
nents that are currently operative in pelea, namely the
Execution Module, Monitoring, Decision Support and
High-Level Planner. We also provide some hints on the
future incorporation of the Learning module into pe-
lea.

Execution Module
The Execution Module (EM) is in charge of the inter-
action between pelea and the environment. The en-
vironment can be either a software simulator, a hard-
ware device (robot), a software application, or a user.
In particular, the EM acts as a wrapper over anything
external to pelea, solving issues like communication,
data protocols, etc... The tasks of the EM are:

• to initiate pelea by receiving a particular domain
and problem to be solved;

• to observe the current world information (which is
composed of the sensors readings) and send it as the
low-level state; and

• to send the low-level actions to the actuators

The main algorithm followed by the EM can be seen
in Algorithm 1 for the top level control algorithm. The
EM communicates with the Monitoring Module (MM)
by sending the low-level state to the MM when asked,
and receiving actions to be executed from the MM. Usu-
ally, these two steps are interleaved, becoming the main
execution loop. Currently, the EM provides integration
with the following environments:

• MDPSim: PPDDL (Younes and Littman 2004) sim-
ulator used in the probabilistic track of the Interna-
tional Planning Competition (IPC). The simulator

generates states stochastically based on the proba-
bilistic version of domains. After receiving an ac-
tion from pelea’s EM, it sends a new state back to
pelea through the EM. Additional support to add
uncertainty to deterministic domains has been im-
plemented, too.

• Virtual Robot Simulator (VRS2): freeware software
suite for robotics applications, research and educa-
tion. VRS is able to simulate industrial robots ma-
nipulators, mobile robots, walking robots, etc.

• Microsoft Robotics Studio and Player: robot inde-
pendent platforms for controlling robots of various
kinds.

• Alive: open platform for developing social and emo-
tion oriented applications (Fernández et al. 2008).

• TIMI (Florez et al. 2010): planning tool for real
logistic problems.

• ORTS:3 a domain independent game platform that is
used as a testbed for game development.

Monitoring Module
The task of the MM is to check whether the observed
state coming from the Execution is a correct state ac-
cording to the planning process. The starting point for
the plan monitoring is to know which aspects of the
plan need to be monitored during execution. Since it
is neither possible nor efficient to monitor all the state
variables, we have to select the deciding variables both
in the context of the plan monitoring and the environ-
ment. This information is provided by the Decision
Support module in the info monitor parameter whose
contents are: i) the variables to be monitored, which
can be of two types, those directly related to the plan
and those related to the environment, ii) the value range
for each variable, denoting the set of correct values the
variables can take on, and iii) the instants of time at
which the variables should be monitored.

The MM also acts as a plan dispatcher sending the
EM the actions to execute. At time t there may be n
actions to be executed in parallel in the plan; in such
a case, the MM sends the n actions to the EM and re-
quests the current real state at relevant times at which
effects produced by the actions are expected, most typ-
ically at the end of the execution of each action. Unlike
approaches that work with temporal flexible plans, the
occurrence time of the start/end of actions is simulated
to be at fixed time schedules in our model, as returned
by PDDL-based planners.

We use a goal regression approach for monitoring
the execution of plans and reacting to execution fail-
ure, similar to PLANEX strategy in (Fikes, Hart, and
Nilsson 1972). The core idea is to represent plans in a
way that supports monitoring by representing the plan
structure in a triangle table and executing the strategy,

2http://robotica.isa.upv.es/virtualrobot/
3http://skatgame.net/mburo/orts/index.html

 <?xml version=”1.0” encoding=”UTF-8”?>
 <define xmlns=”http://www.example.org/xPddl”...>
 <domain name=” driverlog-temporal “>
 <requirements>
 <require-key name=”:typing :durative-actions”/>
 </requirements>
 <types>
 <term name=”location” type=“object”/>
 <term name=”truck” type=“locatable”/>
 <term name=”obj” type=“locatable”/>
 ...
 </types>
 <predicates>
 <atom predicate=”at”>
 <term type=”locatable” name=”?obj”/>
 <term type=”location” name=”?loc”/>
 </atom>
 ...
 </predicates>
 ...
 </domain>
 </define>

Figure 2: Domain XML Schema definition and XML domain DriverLog.

which consists on regressing the problem goals (includ-
ing action preconditions) through the remaining oper-
ators of the plan. Roughly, the regression of a formula
over an action is a sufficient and necessary condition for
the satisfaction of the formula following the execution
of the action (Fritz and McIlraith 2007).

We have implemented an extension of the goal re-
gression method proposed in (Fikes, Hart, and Nils-
son 1972) to deal with the kind of variables that come
up in a PDDL2.1 problem specification. Thus, unlike
PLANEX, our method is not limited to monitoring se-
quential plans but parallel or temporal plans. For this
purpose, for each variable v to monitor, we record four
values in the parameter info monitor : a) the time at
which v is generated, b) the earliest time at which v is
expected to be used as an action precondition, c) the
latest time at which v is expected to be used, and d) the
value range for v. This way, we can record and monitor
any type of temporal variables.

Figure 3: Application example.

An example of the interaction between the EM and
MM can be observed in Figure 3. At time 0 the MM
sends the two actions (walk d2 a b) and (board d1 t1 a)
to the EM. At time 3,10 the MM requests the current
real state and checks against the info monitor variable

whether the effects of the action (board d1 t1 a) have
been successfully generated. If there is no discrepancy,
the MM sends the next action (drive t1 a b d1) to exe-
cute, and makes the next requests at times 6.90 and 10
to check the effects of the corresponding actions. Note
the EM does not perform a real-time simulation, but
it is a discrete event simulator, where events are the
start/end of the execution of actions.

Decision Support
The objective of the Decision Support (DS) module is
twofold. First, calculate which variables, along with
their valid range, need to be monitored by the MM; and,
second, activate a deliberative process when the MM
reports a discrepancy between the observed state and
the expected planning state (including the case in which
there is no available plan). Specifically, a discrepancy is
found if, according to the information in the parameter
info monitor, the value of the variable does not fall
within the value range at the specified time instant.
When a discrepancy is reported from the MM to the
DS, the tasks of the DS are:
• check whether the discrepancy is relevant to the plan

validity or not; so far, as we are only working with
high-level knowledge, every discrepancy found by the
MM is considered as a plan failure by the DS.

• if the discrepancy causes the plan not to be longer ex-
ecutable, the DS must make a decision about apply-
ing a plan-repair method or replanning from scratch;
and

• once a decision is made, and regardless of the choice,
the DS will use the High-level Replanner. If the
choice is replanning, the DS will invoke the planner
with a new problem consisting of the new initial state
(observed state) and the problem goals. If the choice
is repairing, the DS applies a plan-repair method that
will eventually call the High-level Replanner.

Plan-repair based on the analysis of plan dependency
structures involves identifying the actions that are no
longer executable as a consequence of the plan failure.
Obviously, in continuous planning, the interest is not
in repairing the whole plan but fixing the earliest por-
tion of the plan as this will be the first to be executed.
Likewise, minimizing the number of changes in the orig-
inal plan, i.e. maintaining plan stability (Fox et al.
2006), is particularly relevant in the earliest portion of
the plan as well. This is because when a plan is being
executed, the executive has likely committed the ear-
liest part of the plan in terms of equipment, resources
or time, and so it is specially willing to respect the
commitments induced by the partial execution of the
published plan (Cushing and Kambhampati 2005).

The decision between repairing or replanning is done
via the application of goal-state heuristic. This heuris-
tic proceeds regressively and generates all the goal
states in the plan. Each goal state is actually repre-
senting a possible reachable state from which to reuse
the rest of the original plan. Thus, the first goal state
is the one from which to reuse the totality of the origi-
nal plan; the subsequent goal states represent reachable
states from which to reuse smaller and smaller parts
of the original plan. Besides deciding which part of
the original plan to reuse, the heuristic computes an
approximate plan from the observed state to the goal
state and returns an estimation of the composition of
the approximate plan with the reused portion of the
original plan. In order to decide between repairing and
replanning, the algorithm computes the solution with
the first goal state (repairing by keeping the whole
original plan), and the solution with the last goal state
(replanning by discarding the whole original plan).
The best value is returned as the adopted choice.

High-Level Replanner
This component is intended to find plans for solving
a given problem and behaves in different ways. When
called with an initial state, a goal, a domain and an
empty plan, the module will find a solution plan from
scratch and, therefore, behaves as any state of the art
planner. This module might also be called with an ex-
isting plan partially executed and a temporal mark,
just letting know which part of the plan has already
been executed. This would also allow the planner to
detect the deviation of the perceived state with re-
spect to the expected state. In this case, this mod-
ule behaves as a replanner. We plan to carry out ex-
periments with several planners, implementing differ-
ent paradigms (hierarhical, temporal, cost-based, ...).
After reviewing the results on metrics and temporal
constraints in the Temporal Satisfying Track (IPC-
2008), we have selected and successfuly used: LPG-
TD (Gerevini, Saetti, and Serina 2003), SGPLAN (Hsu
et al. 2007), CRIKEY (Coles et al. 2009) and TFD (Ey-
erich, Mattmüller, and Röger 2009), and we have in-
cluded them in the PELEA architecture. The High-
Level Replanner (HLP) module communicates with the

rest of the pelea architecture through the DS module
(see Figure 1).

The objective of HLR is threefold. First, HLR trans-
lates input parameteres problem and domainH from
XPDDL to the PDDL3.0. format. The second goal
of the HLR is to call one of the planners in the system
(LPG-TD, SGPLAN, CRIKEY or TFD). The selected
planner will take problem and domainH as input pa-
rameters (already in PDDL format). After execution,
planner will return planH. The last goal of HLP is to
translate planH to the XPDDL format. That transla-
tion would be the one returned to DS module.

Learning Module
In the research group, we have implemented several ma-
chine learning techniques, and the goal will be to inte-
grate those within pelea. This component will gener-
ate two kinds of knowledge (domain models and control
knowledge) for two kinds of planners (high-level and
low-level). More specifically:
• Domain model learning for high-level planners: we

will integrate techniques that have been previously
defined for acquiring those models as those for
strips representations (Yang, Wu, and Jiang 2007),
htn (Hogg, Kuter, and Munoz-Avila 2009), or prob-
abilistic (Jiménez, Fernández, and Borrajo 2008).

• Control knowledge learning for high-level planners:
we will reuse the extensive experience of the group on
learning control knowledge in various formats (con-
trol rules, policies, macro-operators or cases) (de la
Rosa et al. 2009).

• Learning for low-level planners: building low-level
planners by using learning has been achieved by re-
inforcement learning (Kaebling, Littman, and Moore
1996). In this case, there is usually no explicit differ-
ence between learning the domain and control knowl-
edge.

Conclusions
In this paper, we have presented the on-going work on
building an architecture, pelea, that integrates plan-
ning related processes, such as sensing, planning, exe-
cution, monitoring, replanning and learning. It is con-
ceived as a flexible and modular architecture that can
accomodate state of the art techniques that are cur-
rently used in the overall process of planning. This
kind of architectures will be a key resource to build
new planning applications, where knowledge engineers
will define some of the components, parameterize oth-
ers, and reuse most of the available ones. This will al-
low engineers to easily and rapidly develop applications
that incorporate planning capabilities. We believe this
kind of architecture fills part of the technological gap
between planning techniques and applications.

Acknowledgements
This work has been partially supported by the Spanish
MICIIN project TIN2008-06701-C03.

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.;
Hsu, J.-J.; Jonsson, A.; Kanefsky, B.; Morris, P.;
Rajan, K.; Yglesias, J.; Chafin, B.; Dias, W.; and
Maldague, P. 2004. MAPGEN: Mixed-initiative plan-
ning and scheduling for the Mars Exploration Rover
mission. IEEE Intelligent Systems 19(1):8–12.
Castillo, L.; Morales, L.; González-Ferrer, A.; Fdez-
Olivares, J.; Borrajo, D.; and Onaind́ıa, E. 2009.
Automatic generation of temporal planning domains
for e-learning problems. Journal of Scheduling. ISSN:
1094-6136 (print version), ISSN: 1099-1425 (electronic
version), DOI: 10.1007/s10951-009-0140-x.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A.
2009. Developing an End-to-End Planning Applica-
tion from a Timeline Representation Framework. In
IAAI-09. Proceedings of the 21st Innovative Applica-
tions of Artificial Intelligence Conference, Pasadena,
CA, USA.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.;
and Rabideau, G. 2000. Using iterative repair to im-
prove the responsiveness of planning and scheduling.
In AIPS, 300–307.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith,
A. 2009. Managing concurrency in temporal planning
using planner-scheduler interaction. Artificial Intelli-
gence Journal 173(1):1–44.
Cushing, W., and Kambhampati, S. 2005. Replanning:
a new perspective. In Proc. of ICAPS 2005 Poster
Program.
de la Rosa, T.; Garćıa-Durán, R.; Jiménez, S.;
Fernández, F.; Garćıa-Olaya, A.; and Borrajo, D.
2009. Three relational learning approaches for looka-
head heuristic search. In Proceedings of the Workshop
on Planning and Learning of ICAPS09.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Us-
ing the context-enhanced additive heuristic for tempo-
ral and numeric planning. In Proc. ICAPS 2009.
Fdez-Olivares, J.; Castillo, L.; Garćıa-Pérez, O.; and
Palao, F. 2006. Bringing users and planning technol-
ogy together. experiences in SIADEX. In Proc. ICAPS
2006. Awarded as the Best Application Paper of this
edition.
Fernández, S.; Asensio, J.; Jiménez, M.; and Borrajo,
D. 2008. A social and emotional model for obtain-
ing believable emergent behavior. In Traverso, P., and
Pistore, M., eds., Artificial Intelligence: Methodology,
Systems, and Applications, volume 5253/2008 of Lec-
ture Notes in Computer Science, 395–399. Varna, Bul-
garia: Springer Verlag.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972.
Learning and executing generalized robot plans. Arti-
ficial Intelligence 3:251–288.
Florez, J. E.; Garćıa, J.; Álvaro Torralba; Linares, C.;
Ángel Garcia-Olaya; and Borrajo, D. 2010. Timi-
plan: An application to solve multimodal transporta-

tion problems. In Steve Chien, G. C., and Yorke-
Smith, N., eds., Proceedings of the 2010 Scheduling
and Planning Applications woRKshop (SPARK’10),
36–42.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006.
Plan stability: Replanning versus plan repair. In Proc.
ICAPS 2006, 212–221.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan
optimality during execution. In ICAPS, 144–151.
Georgeff, M. P., and Lansky, A. L. 1987. Reactive
reasoning and planning. In Proceedings of AAAI-87
Sixth National Conference on Artificial Intelligence,
677–68.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Plan-
ning through stochastic local search and temporal ac-
tion graphs. Journal of Artificial Intelligence Research
20:239–290.
Ghallab, M., and Laruelle, H. 1994. Representation
and control in IxTeT, a temporal planner. In Pro-
ceedings of the 2nd International Conference on AI
Planning Systems.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2009.
Learning hierarchical task networks for nondetermin-
istic planning domains. In Proceedings of the Twenty-
first International Joint Conference on Artificial In-
telligence (IJCAI-09). AAAI Press.
Hsu, C.-W.; Wah, B. W.; Huang, R.; and Chen, Y.
2007. Constraint partitioning for solving planning
problems with trajectory constraints and goal prefer-
ences. In Proceedings of IJCAI’07.
Jiménez, S.; Fernández, F.; and Borrajo, D. 2008. The
PELA architecture: integrating planning and learning
to improve execution. In Proceedings of the AAAI’08.
Chicago, IL (USA): AAAI.
Kaebling, L. P.; Littman, M. L.; and Moore, A. W.
1996. Reinforcement learning: A survey. International
Journal of Artificial Intelligence Research 237–285.
Myers, K. L. 1999. CPEF: A continuous planning and
execution framework. AI Magazine 20(4):63–69.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action
models from plan examples using weighted max-sat.
Artificial Intelligence 171(2-3):107–143.
Younes, H. L. S., and Littman, M. L. 2004.
PPDDL1.0: An extension to pddl for expressing plan-
ning domains with probabilistic effects. Technical Re-
port CMU-CS-04-167, School Of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania.

